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Abstract

In this paper, we propose a deep reinforcement learning (DRL) based framework
to efficiently perform runtime channel pruning on convolutional neural networks
(CNNs). Our DRL-based framework aims to learn a pruning strategy to deter-
mine how many and which channels to be pruned in each convolutional layer,
depending on each individual input instance at runtime. Unlike existing runtime
pruning methods which require to store all channels parameters for inference, our
framework can reduce parameters storage consumption by introducing a static
pruning component. Comparison experimental results with existing runtime and
static pruning methods on state-of-the-art CNNs demonstrate that our proposed
framework is able to provide a tradeoff between dynamic flexibility and storage
efficiency in runtime channel pruning.

1 Introduction

In recent years, convolutional neural networks (CNNs) have demonstrated remarkable performance
in various computer vision tasks [17, 30, 8, 7, 36, 18, 7, 37, 4]. However, since most state-of-the-art
CNNs require expensive computation power for inference and huge storage space to store large
amount of parameters, the limitation of energy, computation and storage on mobile or edge devices
has become the major bottleneck on real-world deployments of CNNs. Existing studies have been
focused on speeding up the execution of CNNs for inference on edge devices by model compression
using matrix decomposition [3, 25], network quantization [2], network pruning [5], etc. Among these
approaches, channel pruning, which discards an entire input or output channel and keeps the rest of
the model with structures, has shown promising performance [11, 24, 38, 26].

Most channel pruning approaches can be categorized into two types: runtime and static. Static
approaches aim to evaluate the importance of each channel over the whole training dataset and remove
the least important channels to minimize the loss of performance after pruning. By permanently
pruning a number of channels, the computation and storage cost of a CNN can be dramatically reduced
when being deployed, and the inference execution can be accelerated consequently. On the other
hand, runtime approaches have been recently proposed to achieve dynamic channel pruning on each
individual instance [6]. To be specific, the goal of runtime approaches aims to evaluate the channel
importance at runtime, which is assumed to be different on different input instances. By pruning
channels dynamically, different pruned structures can be considered as different routing of data stream
inside CNNs. This kind of approaches is able to significantly improve the representation capability of
a CNN, and thus achieve better performance in terms of prediction accuracy compared with static
approaches. However, previous runtime approaches trade storage cost off dynamic flexibility. To
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achieve dynamic pruning on different individual instances, all parameters of kernels are required to
be stored (or even more parameters are introduced). This makes runtime approaches not applicable
on resource-limited edge devices. Moreover, most of previous runtime approaches only evaluate the
importance among channels in each single layer independently, without considering the difference in
efficiency among layers.

In this paper, to address the aforementioned issues of runtime channel pruning approaches, we
propose a deep reinforcement learning (DRL) based pruning framework. Basically, we aim to apply
DRL to prune CNNs by maximizing received rewards, which are designed to satisfy the overall
budget constraints along side with the network’s training accuracy. Note that automatic channel
pruning by DRL is a challenging task because the action space is usually very huge. Specifically, the
discrete action space for the DRL agent is as large as the number of channels at each layer, and the
action space may vary among layers since there are different numbers of channels in different layers.
To facilitate pruning CNNs by DRL, for each layer, we first design a novel prediction component to
estimate the importance of channels, and then develop a DRL-based component to learn the sparsity
ratio of the layer, i.e., how many channels should be pruned.

Different from previous runtime channel pruning approaches, which only learn runtime importance
of each channel, we propose to learn both runtime importance and additionally static importance
for each channel. While runtime importance maintains the saliency of specific channels for each
individual input, the static importance captures the overall saliency of the corresponding channel
among the whole dataset. According to each type of channel importance, we further design different
DRL agents (i.e., a runtime agent and a static agent) to learn a sparsity ratio in a layer-wise manner.
The sparsity ratio learned by the runtime agent together with the estimated runtime importance of
channels is used to generate runtime pruning structures, while the sparsity ratio learned by the static
agent together with the estimated static importance of channels is used to generate static (permanent)
pruning structures. By considering both the pruning structures, our framework is able to provide a
trade-off between storage efficiency and dynamic flexibility for runtime channel pruning.

In summary, our contributions are 2-fold. First, we propose to prune channels by taking both runtime
and static information of the environment into consideration. Runtime information endows pruning
with flexibility based on different input instances while static information reduces the number of
parameters in deployment, leading to storage reduction, which cannot be achieved by conventional
runtime pruning approaches. Second, we propose to use DRL to determine sparsity ratios, which is
different from the previous pruning approaches that manually set sparsity ratios. The codes of our
method can be found at https://github.com/jianda-chen/static_dynamic_rl_pruning .

2 Related Work and Preliminary

Structure Pruning [33] pioneered structure pruning in deep neural network by imposing the L2,1

norm in training. Under the same framework, [22] regarded parameters in batch normalization as
channel selection signal, which is minimized to achieve pruning during training. [11] formulated
channel pruning into a two-step iterative process including LASSO regression based channel selection
and least square reconstruction. [24] formulated channel pruning as minimization of difference of
output features, which is solved by greedy selection. [38] further considered early prediction,
reconstruction loss and final loss to select importance channels. [23] proposed to use layer input to
learn channel importance, which is then binarized for pruning. Overall, structure pruning methods
accelerate inference by producing regular and compact model. However, this brought regularness
requires preserving more parameters to ensure performance.

Dynamic Pruning Dynamic pruning provides different pruning strategies according to input data.
[32] proposed to reduce computation by skipping layers or channels based on the analysis of input
features. [6] applied the same framework while extended features selection in both input and output
features. Similarly, [20] introduced multiple branches for runtime inference according to inputs. A
gating module is learnt to guide the flow of feature maps. [1] learned to choose the components
of a deep network to be evaluated for each input adaptively. Early exit is introduced to accelerate
computation. Dynamic pruning adaptively takes different actions for different inputs, which is able to
accelerate the overall inference time. However, the original high-precision model needs to be stored,
together with extra parameters for making specified pruning actions. [27] proposed to learn routers to
route layers output to different next layers, in order to adjust a network to multi-task learning.
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Figure 1: Our proposed DRL-based runtime pruning framework. Solid arrows indicate differentiable
dataflow. Dash arrows indicate dataflow that is non-differentiable or does not require differentiation.

DRL for Pruning Channel selection is on trial using DRL. [19] trained a LSTM model to re-
member and provide channel pruning strategy for backbone CNN model, which is conducted using
reinforcement learning techniques. [10] proposed to determine the compression ratio in each layer by
training an agent regarding the pruning-retraining process as an environment.

Reinforcement Learning We consider a standard setup of reinforcement learning: an agent se-
quentially takes actions over a sequence of time steps in an environment, in order to maximize the
cumulative reward [31]. This problem can be formulated as a Markov Decision Process (MDP) of
a tuple (S, A, P , R, γ), where S is the state space, A is the action space, P : S × A× S → [0, 1]
is transition probabilities, R : S × A → R is the reward function, and γ ∈ [0, 1) is the discount
factor. The goal of reinforcement learning is to learn a policy π(a|s) that maximizes the objective of
discounted cumulative rewards over finite time steps as maxπ

∑T
t=0 γ

tR(st, at), where st ∈ S and
at ∈ A are state and taken action at time step t respectively.

3 DRL-based Runtime Pruning Framework

The overview of our proposed framework is presented in Fig. 1, which shows our pruning procedure
in the t-th convolutional layer. To prune convolutional layer t, we 1) learn two types of channel
importance: static channel importance us and runtime channel importance ur; 2) learn two DRL
agents, the runtime agent and the static agent, producing action art and ast which are defined as
sparsity ratios of runtime and static pruning, respectively; 3) perform a trade-off pruner to balance
the runtime and static pruning results.

Both runtime channel importance ur ∈ RC and static channel importance us ∈ RC indicate the
channel importance of the full precision output feature map Fout of a convolution layer, where C is
the number of channels in Fout. Channels are selected to be pruned according to the values of each
element in ur and us, and how many channels to be selected is decided by the sparsity ratios art and
ast , respectively. The balanced pruning result is represented by two items, a decision mask m of binary
values (1/0) to indicates which channels to be pruned (1: pruned, 0: preserved) and a unified channel
importance vector u. m and u are generated by trade-off pruner g as [m,u] = g(ur,us, a

r
t , a

s
t ),

where art , a
s
t ∈ R, u ∈ RC and m ∈ {0, 1}C . The final output after pruning is constructed by

multiplying the full precision output feature map Fout, by 1−m and u as,

F̂out = Fout ⊗ (1−m)⊗ u, (1)

where ⊗ is the broadcast element-wise multiplier, and 1 is the matrix of the same size as m with all
the elements being 1. In the following, we introduce how to learn the runtime channel importance
vector ur and the static channel importance vector us in Sec. 3.1, how to construct the trade-off
pruner g(·) in Sec. 3.2, and how to design the two DRL agents to predict art and ast in Sec. 3.3.
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3.1 Learnable Channel Importance

We consider that a convolutional layer takes input of feature map Fin ∈ RCin×Hin×Win and generates
an output feature map Fout ∈ RCout×Hout×Wout , where C∗, H∗ and W∗ are the number of channels,
width and height of the feature map F∗, respectively. Each element of the channel importance
vectors ur ∈ RCout and us ∈ RCout represents the importance value of the corresponding channel,
respectively. In the following, we drop the subscript out for simplicity in presentation.

Runtime Channel Importance The runtime channel importance ur of output feature Fout is
predicted by a runtime importance predictor f(·), which takes Fin as input. Therefore, ur can be
considered as a function of Fin, whose values vary over different input instances. In this paper, we
design a subnetwork to approximate f(·), which is expected to be small and computationally efficient.
Similar to many existing dynamic pruning methods [6, 13], we use global pooling as the first layer
in f(·), because global pooling is computationally efficient and it can reduce the dimension of Fin
dramatically. We then feed the output of global pooling into a fully-connected layer without any
activation function. The output of fully-connected layer is the runtime channel importance vector ur.

Static Channel Importance The static channel importance us is to capture the global information
for pruning, and thus is learned from the whole dataset. An static importance predictor h(·) is
introduced to predict us by taking convolutional filters’ features and a learnable vector v ∈ RCout

as input. We denotes K ∈ RCout×Cin×k×k as the convolutional filters in layer t, where k is kernel
size. Three types of features are designed upon convolutional filter K: norm n ∈ RCout , filter
distance d ∈ RCout and filter Hessian diagonal H ∈ RCout . The norm value n(i) for i-th output
channel is defined as Frobenius norm of i-th filter K(i): n(i) =

∥∥K(i)
∥∥
F

, where ‖ · ‖F stands for
Frobenius norm. Inspired by FPGM [9], filter distance is an import feature for pruning. We define
distance d(i) as the Euclidean distance between the i-th filter K(i) and a “mean” filter: d(i) =∥∥∥K(i) − 1

Cout

∑Cout

i=1 K(i)
∥∥∥
F

. Due to computation complexity of Hessian matrix, we approximate
Hessian diagonal using square of first-order Taylor expansion. Therefore our filter Hessian diagonal
H(i) for i-th filter is defined as the sum of approximated Hessian diagonal of all weights in i-th filter
K(i): H(i) =

∥∥∂LCNN

∂K(i) ⊗K(i)
∥∥2
F

, where ⊗ is element-wise multiplication and LCNN is the CNN
loss. The first-order gradient ∂LCNN

∂K(i) is evaluated on the whole training dataset.

The static channel importance us is then generated by the static importance predictor h(·) taking
input of n, d, H and v as u(i)

s = h(n(i),d(i),H(i),v(i)), where u(i)
s represents the static importance

value of i-th output channel and us is concatenation of u(i)
s . h(·) is approximated by a subnetwork

which consists of two fully-connected layers with one SeLU [15] activation layer in the middle. The
reason of not choosing ReLU is “dead ReLU”, which indicates it may always output zeros and stops
backpropagating gradient. The three feature vectors n, d and H are generated by pretrained backbone
CNN as introduced above and fixed during further training. Meanwhile v is randomly initialized and
learned through backpropagation. The subnetwork h(·) shares parameters among all convolutional
layers in order to learn importance globally, while v is layer specific to learn locally.

3.2 The Trade-off Pruner

We propose a trade-off pruner to generate a unified channel pruning decision. The goal of the
trade-off pruner is to 1) prune those channels that are decided to be pruned by both of the runtime and
the static pruning components, and 2) prune a portion of the rest channels by weighted votes from the
two components.

Which channels to be preserved / pruned at runtime are determined according to the values of runtime
channel importance ur. Let mr ∈ {0, 1}C denotes a decision mask for pruning, where if the value
is 0, then the corresponding channel is preserved, otherwise pruned. For now, suppose a sparsity
ratio art for runtime pruning has already been generated via the dynamic DRL agent, which will be
introduced in Sec. 3.3. We then prune (C − dartCe) channels with the smallest importance values in
ur. Accordingly, the value of an element in mr is set to be 1 if the corresponding channel is pruned,
otherwise 0. Similarly, for static pruning, given static importance us and a sparsity ratio ast learned
by the static DRL agent, (C − dastCe) channels with smallest importance values in us are pruned,
and a mask ms ∈ {0, 1}C is generated to indicate the static pruning results.

4



With the runtime and the static pruning decisions, mr and ms, our trade-off pruner generates a
unified pruning result. To be specific, we define the mask representing channels pruned by both
decisions as mo = ms ∧mr, where ∧ is element-wise logical AND and 1/0 in mask represents
logical true or false. The channels indicated to be pruned by mo (i.e., the corresponding values are
1) are pruned in final. The channels which are determined to be pruned by mr but not by ms can
be represented by a new mask mr = mr −mo. Similarly, the channels which are determined to be
pruned by mr but not by ms can be represented by another new mask ms = ms −mo.

To control the trade-off between mr and ms, we define a rate Rr denoting how much we trust the
pruning decision made by mr, while 1 − Rr is for ms. That means the channels selected by mr

will be finally pruned with the rate Rr. Specifically, the number of channels which are selected by
mr and finally will be pruned is C

′

r = bRr(1>mr)c, where 1>mr returns the number of channels
selected by mr. We then select the first C

′

r-smallest important channels which are recommended to
be pruned by mr to form a mask m̂r. Similarly, for static pruning, we select the first C

′

s-smallest
important channels which are recommended to be pruned by ms to form another mask m̂s, where
C

′

s = b(1−Rr)(1>ms)c.
The final trade-off pruning mask is defined as m = mo + m̂r + m̂s, and the unified channel
importance is simply defined as u = ur ⊗ us. With the trade-off pruning mask m and the unified
channel importance u, the pruned output feature F̂out can be generated by Eq. 1.

3.3 DRL-based Sparsity Ratio Estimation

In this section, we present how to formulate the problems of learning the ratios ast and art for static
pruning and runtime pruning, as a MDP, and solve it via DRL, respectively.

The Runtime DRL Agent In the MDP for runtime pruning, we consider the t-th layer of the
network as the t-th timestamp. The details of the MDP are listed as follows.

State Given an input feature map Fin of layer t, we pass it to a global pooling layer to reduce its
dimension to RCin , where Cin is the number of input channel of layer t. Since Cin varies among
layers, we feed the output of global pooling to a layer-dependent encoder to project it to a fix-length
vector srt with dimensions of 128, which is considered as as a state representation of DRL in the
context of runtime pruning.

Action The action art is defined as the sparsity ratio at layer t. Existing DRL-base pruning method
RNP [19] uses a unified discrete actions space with k actions which are too coarse to achieve high
accuracy. However, fine-grained discrete action space as large as number of channels suffers from
exploration difficulty. Therefore, instead of using discrete action spaces, we propose a continuous
action space with action art ∈ (0, 1]. To avoid over-pruning the filters and crashing in training, we set
a minimum sparsity ratio +α such that art ∈ (+α, 1].

Reward The reward function is proposed to consider both network accuracy and computation
budget. We define the accuracy relative reward based on the loss of pruned backbone network
as Rracc = −LCNN , where LCNN is the CNN loss, and it may vary in scale among different
training stage, i.e. large at beginning of training and small near convergence. To avoid the instability
brought by the reward scale, Rracc is normalized by a moving average via Rr

′

acc = Rracc/βb, where
βb = λβb−1 + (1− λ)Rracc is the moving average at the b-th training batch and λ is the weight.

To force computation of the pruned network under a given computation budget, we define a exponen-
tial reward function of budget regarding rewardRrbud = 1−exp(α1(Bcom−Bcom)) ifBcom > Bcom,
otherwise, Rrbud = 0, where Bcom is the computation consumption, which is calculated based on the
current of pruned strategy, and Bcom is the given computation budget constraint. Finally we sum up
the two rewards to form sparse rewards Rrt = Rr

′

acc +Rrbud if t = T , and Rrt = 0 if t < T .

Actor-Critic Agent To solve the continuous action space problem, we choose a commonly used
actor-critic agent with a Gaussian policy. Actor-critic agent consists of two components: 1) actor
outputs the mean and variance to form a Gaussian policy where the continuous action is sampled
from; 2) critic outputs a scalar predicting the future discounted accumulated reward and assists the
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policy training. Actor network and Critic network share one-layer RNN with hidden state size of 128
which takes state srt as input. The output of RNN is fed into actor specific network constructed by
two branches of fully-connected layers, leading to the mean and variance of the Gaussian policy. The
action is sampled for the Gaussian distribution outputed by the actor: art ∼ N (µ(srt ; θ

r), σ(srt ; θ
r)),

where µ(srt ; θ
r) and σ(srt ; θ

r) is the mean and variance outputed from actor network. The Critic
specific network has one fully-connected layer after the shared RNN, and outputs the predictive value
V (srt ; θ

r).

To optimize the actor-critic agent, Proximal Policy Optimization (PPO) [29] is used. Note that we
relax the action art to (−∞,+∞) in PPO, and use truncate function to clip art in (+α, 1] when
perform pruning. Besides, an additional regularizer La is introduced to restrict the relaxed art staying
in range (+α, 1] as La = 1

2 ||a
r
t −max(min(art , 1),+α)||22.

The Static DRL Agent Similar to runtime pruning, the MDP in static pruning is also formulated
layer-by-layer. The difference against runtime pruning is the definition of state and reward. The
state sst in static pruning is defined as the full shape of Fout, and does not depend on Fout and the
current input data. Action ast is sampled from actor’s outputed Gaussian policy, and it represents
the sparsity ratio at layer t. The reward function takes both network accuracy and parameters
budget into consideration. The accuracy relative is defined as the same as that in runtime pruning,
i.e., Rsacc = Rr

′

acc. To reduce the number of parameters of network to satisfy the parameters
storage budget, the parameters relative reward is defined in an exponential form as Rsparam =

1 − exp(α2(Bparam − Bparam)) if Bparam > Bparam, otherwise Rsparam = 0, where Bparam is
the number of preserved parameters after static pruning and Bparam is the parameters storage budget.

Actor-Critic Agent This agent is similar to the one in runtime pruning. It has the same architecture
as runtime pruning but differs in introducing a fully-connected layer as the encoder before RNN. This
agent is also optimized by PPO.

3.4 Training and Inference Algorithm 1 Training process
1: Input: pretrained backbone CNN, computation budget

B̄com, storage budget B̄param

2: Output: CNN, importance predictor f(·), static importance
us, runtime and static DRL agents

3: us ← 1, as
t ← 1, ar

t ← 1
4: while not converge do
5: fix us, update f(·) and CNN
6: end while
7: while not converge do
8: Update h(·), v, f(·) and CNN {us is generated by h(·)

and v}
9: end while

10: Use DRL agents to predict actions ar
t and as

t at each layer t
11: while not converge do
12: for i ∈ 1...N1 do
13: Compute rewards Rr

t and Rs
t using budget B̄com and

B̄param

14: Fix us, f(·) and CNN, update DRL agents
15: end for
16: for i ∈ 1...N2 do
17: Fix DRL agents, update h(·), v, f(·) and CNN
18: end for
19: end while

Alg. 1 illustrates the training process of
our method. Given a pretrained back-
bone CNN, firstly we finetune the CNN
and train runtime importance predictor
jointly (line 5), with sparsity art =1 and
fixed all static pruning importance us
to 1. We then remove the restriction on
the static pruning importance us which
is now generated by importance predic-
tor h(·) and layer-specific learnable vec-
tor v. We train static pruning h(·), v,
the backbone CNN and the runtime im-
portance predictor (line 8), with spar-
sity ast = 1 and runtime pruning spar-
sity fixed as art = 1. After finetuning,
we use the DRL agents to predict the
sparsity given computation and storage
constraints. The DRL agents and the
CNN with runtime/static importance are
trained in alternating manner: We first
fix the CNN as well as runtime/static
importance and train two DRL agents,
regarding the CNN as environments (line 12 to line 15). We then fix two agents and finetune the
CNN and runtime/static importance (line 16 to line 18). We repeat these two steps until convergence.

For CIFAR-10, we train (N1 = 1560) batches (4 epochs) for DRL agents (line 12 to line 15) and
(N2 = 780) batches (2 epochs) for h(·), v, f(·) and CNN (line 16 to 18) at each iteration. The total
number of iterations is 40 (for line 11 to 19). For ImageNet, at each iteration of training, N1 =
1200 and N2 = 600 except last iteration. The total number of iterations is 64. At last iteration, N2
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= 200,000 for finetuning the CNN. We use Adam optimizer for both DRL agent and CNN, and set
learning rate to 10−6 for the DRL agents. For CNN finetuning and runtime/static importance training,
the learning rate is 10−3 on CIFAR-10. On ImageNet ILSVRC2012, the learning rate is 10−4.

Inference While runtime pruning performs for individual instance dynamically, static pruning
strategy does not depend on individual input data points. Therefore, the action ast predicted by static
agent and the static importance vector us generated by static importance predictor h(·) are fixed,
regardless of input instances. We can consequently remove static agent and h(·) in inference, and
eliminate the storage and computation cost of them. With the action ast and hyper-parameter Rr, we
can decide which filters can be pruned permanently. Specifically, channels with ((1− ast )(1−Rr))-
smallest static importance values are pruned permanently.

4 Experiment

We evaluate our DRL pruning framework on two benchmark datasets: CIFAR-10 [16] and ImageNet
ILSVRC2012 [28]. Our goal is to verify our framework is able to achieve comparable or even better
performance in terms of prediction accuracy as other state-of-the-art channel pruning methods, but
save much more storage space. We further analyze the effect of hyper-parameters and different
sparsity settings on CIFAR-10. For CIFAR-10, we use M-CifarNet [35] as the backbone CNN. On
ImageNet ILSVRC2012, ResNet-18 [8] and MobileNet [12] are used as the backbone CNN.

Experimental results on CIFAR-10 We compare our proposed method with the following state-
of-the-art runtime pruning methods: FBS [6], RNP [19] on CIFAR-10. The comparison results at
sparsity 0.5 and 0.7 are shown in Table 1 and Table 2 respectively. The sparsity is defined as the ratio
of preserved output channels after pruning at every layer.

Method Baseline acc. Acc. ∆acc. Speed-up #Params GPU Time CPU Time

FBS [6] 91.37 89.88 -1.49 3.93× 1.11× 10.9 ms 172.0ms
RNP [19] 92.07 84.93 -7.14 3.56× 1.00× 11.1 ms 175.3ms
ours (Rr = 1) 92.07 91.425 -0.645 3.92× 1.31× 11.2 ms 178.3ms
ours (Rr = 0.5) 92.07 91.228 -0.842 3.92× 0.78× 9.8 ms 110.7ms

Table 1: Comparison with state-of-the-art runtime pruning methods on CIFAR-10 at sparsity 0.5.
Speed-up is calculated on MACs.

Method Baseline acc. Acc. ∆acc. Speed-up #Params

FBS [6] 91.37 91.23 -0.14 2× 1.11×
ours (Rr = 1.0) 92.07 93.184 1.114 1.99× 1.31×
ours (Rr = 0.5) 92.07 92.714 0.629 1.99× 0.97×

Table 2: Comparison with state-of-the-art runtime pruning methods on CIFAR-10 at sparsity 0.7.
Speed-up is calculated on MACs.

Note that for a fair comparison with other methods, the computation and storage budget constraints
in our method is calculated according to the sparsity of other methods. Under these constraints, our
method does not necessarily lead to the same sparsity as other methods in each layer. RNP cannot set
exact sparsity ratio. Instead, its average sparsity ratio is accessible only during testing, which is 0.537
in Table 1. The result of FBS is reproduced using the released code1. The column #Params represents
the number of parameters compared to the backbone CNN. Speed-up is calculated on MACs. The
column of GPU time is the time of forwarding a batch of 256 images on an NVIDIA P100 GPU and
CPU time is on CPU.

Table 1 shows that our method outperforms other state-of-the-art methods, achieving highest accuracy
at an overall sparsity ratio of 0.5. Our method has very close computation speed-up compared to FBS,
but outperforms FBS around 0.65% to 0.86%. When the runtime pruning strategy is solely considered
by setting Rr = 1, our method surpasses other comparison methods, indicating that our DRL-based
framework improves the performance of channel runtime pruning. By balancing runtime and static

1https://github.com/deep-fry/mayo
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pruning via setting Rr = 0.5, our method reduces the number of the overall stored parameters and
achieves lower accuracy drop than other methods. Table 2 shows that our method outperforms FBS
at sparsity of 0.7. When Rr = 0.5, our method achieves better performance than the baseline CNN
with 2× speed-up and contains less parameters.

Figure 2: Accuracy drop for M-CifarNet on
CIFAR-10 with computational budget.

Figure 3: Trade-off between runtime and
static pruning at sparsity 0.45.

Trade-off between Runtime and Static Pruning Fig. 2 shows the performance of various sparsity
ratios in our method. Again, our method does not prune with one single sparsity ratio for all layers,
but uses the sparsity ratio to calculate computation and storage constraints, with which the sparsity
ratio is learned for each layer. Fig. 2 demonstrates that our method holds the accuracy when sparsity
is larger than about 0.5, which corresponds to about 4× computational acceleration.

We also study the relation between Rr and network compactness in our framework. Fig. 3 demon-
strates the impact ofRr when sparsity is 0.45. The hyper-parameterRr determines how much we trust
about runtime pruning. With Rr close to 1, the accuracy becomes higher due to the more dynamic
network flexibility but the space of the parameters storage also increases. When Rr diminishes, the
network accuracy decreases but the parameter storage is reduced.

Method Baseline acc. Acc. ∆acc.

ours (runtime only Rr = 1) 92.07 91.425 -0.645
ours (Rr = 0.5) 92.07 91.228 -0.842
ours (separate static and runtime) 92.07 90.03 -2.04
FPGM+FBS 92.07 90.456 -1.614

Table 3: Comparison to methods with separately static and runtime
pruning on CIFAR-10 at sparsity 0.5.

Comparison to Separately Static and Runtime Pruning In this section, we compare our method
with two additional baseline methods. One is a variation of our method by separately training static
pruning and runtime pruning. In this method, we start from a pretrained backbone CNN, f(·) and
us. Then we add the static DRL agent to prune channels statically by learning the static policy and
us. Finally, we add the runtime DRL agent to prune channels dynamically, by fixing the static DRL
agent and us, and updating the runtime DRL agent and f(·) only. Another method is to combine
state-of-the-art static and runtime pruning methods. We start from a pretrain backbone CNN, and
then prune channels with the static pruning method FPGM [9], and finally prune channels with the
runtime method FBS [6]. The experimental results are shown in Table 3.

DRL agents lr CNN & f(·) lr Acc.

10−6 10−3 91.23

10−6 10−2 10.00
10−6 10−4 90.67
10−5 10−3 89.95
10−7 10−3 90.79

Table 4: Comparison of various learning
rates on CIFAR-10.

Hyper-parameter choosing: learning rate In this sec-
tion, we set up an experiment with comparing various
learning rates for training procedure of our proposed
method. Table 4 shows the accuracy results of various
learning rates settings. The first column indicates the learn-
ing rate for DRL agents and second column indicates the
learning rate for training f(·) and CNN. It shows that our
learning rates setting, 10−6 for DRL agents and 10−3 for
f(·) and CNN, achieves the best accuracy performance.
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Experimental results on ImageNet ILSVRC2012 We compare our method with state-of-the-art
channel pruning methods on ImageNet ILSVRC2012. In the first experiment as shown in Table 5, we
use ResNet-18 as the backbone CNN. Among the methods for comparison, FBS [6] and CGNN [14]
are runtime pruning methods and AMC [10] is DRL-based static pruning. The overall sparsity ratio
of our method is 0.7, which is under the same setting of FBS. Our method with Rr = 0.5 achieves
the smallest top-1 accuracy drop compared with other methods, and also achieves the highest top-1
accuracy after pruning. Our method has very close MACs to FBS, while the number of preserved
parameters is reduced to 81.2% of the baseline.

We also implement the our method on MobileNet which is a more compact than ResNet-18. Ta-
ble 6 shows the comparison results on MobileNet. AMC [10] is DRL-based static pruning and
NetAdapt [34] is heuristics-based static pruning. 75% MobileNet [12] is a variant of MobileNet
with width multiplier 75% and input size of 224. Table 6 shows that our method outperforms the
comparison methods on both top-1 and top-5 accuracy.

Method Baseline
top-1 acc.

Top-1
acc.

∆ top-1
acc.

Baseline
top-5 acc.

Top-5
acc.

∆ top-5
acc. Speed-up #Params

DCP [38] 69.64 67.35 -2.29 88.98 88.86 -0.12 1.71× 0.71×
FPGM [9] 70.28 68.41 -1.87 89.63 88.48 -1.15 1.71× 0.72×
Dynamic Sparse Graph [21] 69.48 64.8 -4.68 - - - 1.4 × -
CGNN [14] 69.02 67.95 -1.07 88.84 88.21 -0.63 1.63× -
FBS [6] 70.71 68.17 -2.54 89.68 88.22 -1.46 1.98× 1.12×
AMC [10] 69.76 66.63 -3.13 89.08 87.20 -1.88 2.00× 0.76×
Ours (Rr = 0.5) 69.76 68.73 -1.03 89.08 88.65 -0.43 1.94× 0.81×

Table 5: Comparison with the state-of-the-art channel pruning with ResNet-18 on ImageNet. Speed-
up is calculated on MACs.

Method Baseline
top-1 acc.

Top-1
acc.

∆ top-1
acc.

Baseline
top-5 acc.

Top-5
acc.

∆ top-5
acc. Speed-up

AMC [10] 70.9 70.5 -0.4 89.5 89.3 -0.2 2.00×
NetAdapt [34] - 69.1 - - - - 2.00×
75% MobileNet [12] 70.9 68.4 -2.5 89.9 88.2 -1.7 1.79×
Ours (Rr = 0.5) 70.9 70.6 -0.3 89.5 89.6 +0.1 2.00×

Table 6: Comparison with the state-of-the-art channel pruning with MobileNet on ImageNet. Speed-
up is calculated on MACs.

5 Conclusion

In this paper, we present a deep reinforcement learning based framework for deep neural network
channel pruning in both runtime and static sheme. Specially, channels are pruned according to input
feature as runtime pruning, and based on entire training dataset as static pruning, with 2 reinforcement
agents to determine the corresponding sparsity. Our method combines the merits of runtime and
static pruning, and provides trade-off between storage and dynamic flexibility. Extensive experiments
demonstrate the effectiveness of our proposed method.
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